Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lacon-, Shrub- and Parity-Decompositions: Characterizing Transductions of Bounded Expansion Classes (2104.10446v5)

Published 21 Apr 2021 in cs.DM and cs.LO

Abstract: The concept of bounded expansion provides a robust way to capture sparse graph classes with interesting algorithmic properties. Most notably, every problem definable in first-order logic can be solved in linear time on bounded expansion graph classes. First-order interpretations and transductions of sparse graph classes lead to more general, dense graph classes that seem to inherit many of the nice algorithmic properties of their sparse counterparts. In this paper, we show that one can encode graphs from a class with structurally bounded expansion via lacon-, shrub- and parity-decompositions from a class with bounded expansion. These decompositions are useful for lifting properties from sparse to structurally sparse graph classes.

Citations (1)

Summary

We haven't generated a summary for this paper yet.