Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Link Prediction on N-ary Relational Data Based on Relatedness Evaluation (2104.10424v1)

Published 21 Apr 2021 in cs.LG, cs.AI, and cs.CL

Abstract: With the overwhelming popularity of Knowledge Graphs (KGs), researchers have poured attention to link prediction to fill in missing facts for a long time. However, they mainly focus on link prediction on binary relational data, where facts are usually represented as triples in the form of (head entity, relation, tail entity). In practice, n-ary relational facts are also ubiquitous. When encountering such facts, existing studies usually decompose them into triples by introducing a multitude of auxiliary virtual entities and additional triples. These conversions result in the complexity of carrying out link prediction on n-ary relational data. It has even proven that they may cause loss of structure information. To overcome these problems, in this paper, we represent each n-ary relational fact as a set of its role and role-value pairs. We then propose a method called NaLP to conduct link prediction on n-ary relational data, which explicitly models the relatedness of all the role and role-value pairs in an n-ary relational fact. We further extend NaLP by introducing type constraints of roles and role-values without any external type-specific supervision, and proposing a more reasonable negative sampling mechanism. Experimental results validate the effectiveness and merits of the proposed methods.

Citations (23)

Summary

We haven't generated a summary for this paper yet.