Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Stabilized integrating factor Runge-Kutta method and unconditional preservation of maximum bound principle (2104.09977v1)

Published 20 Apr 2021 in math.NA and cs.NA

Abstract: Maximum bound principle (MBP) is an important property for a large class of semilinear parabolic equations, in the sense that the time-dependent solution of the equation with appropriate initial and boundary conditions and nonlinear operator preserves for all time a uniform pointwise bound in absolute value. It has been a challenging problem on how to design unconditionally MBP-preserving high-order accurate time-stepping schemes for these equations. In this paper, we combine the integrating factor Runge-Kutta (IFRK) method with the linear stabilization technique to develop a stabilized IFRK (sIFRK) method, and successfully derive sufficient conditions for the proposed method to preserve MBP unconditionally in the discrete setting. We then elaborate some sIFRK schemes with up to the third-order accuracy, which are proven to be unconditionally MBP-preserving by verifying these conditions. In addition, it is shown that many classic strong stability-preserving sIFRK schemes do not satisfy these conditions except the first-order one. Extensive numerical experiments are also carried out to demonstrate the performance of the proposed method.

Citations (37)

Summary

We haven't generated a summary for this paper yet.