Papers
Topics
Authors
Recent
2000 character limit reached

Alexander modules, Mellin transformation and variations of mixed Hodge structures

Published 20 Apr 2021 in math.AG and math.AT | (2104.09729v1)

Abstract: To any complex algebraic variety endowed with a morphism to a complex affine torus we associate multivariable cohomological Alexander modules, and define natural mixed Hodge structures on their maximal Artinian submodules. The key ingredients of our construction are Gabber-Loeser's Mellin transformation and Hain-Zucker's work on unipotent variations of mixed Hodge structures. As applications, we prove the quasi-unipotence of monodromy, we obtain upper bounds on the sizes of the Jordan blocks of monodromy, and we explore the change in the Alexander modules after removing fibers of the map. We also give an example of a variety whose Alexander module has non-semisimple torsion.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.