Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Recursive Approach to Solving Parity Games in Quasipolynomial Time (2104.09717v3)

Published 20 Apr 2021 in cs.GT and cs.FL

Abstract: Zielonka's classic recursive algorithm for solving parity games is perhaps the simplest among the many existing parity game algorithms. However, its complexity is exponential, while currently the state-of-the-art algorithms have quasipolynomial complexity. Here, we present a modification of Zielonka's classic algorithm that brings its complexity down to $n{O\left(\log\left(1+\frac{d}{\log n}\right)\right)}$, for parity games of size $n$ with $d$ priorities, in line with previous quasipolynomial-time solutions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.