Papers
Topics
Authors
Recent
2000 character limit reached

Gröbner bases, symmetric matrices, and type C Kazhdan-Lusztig varieties

Published 19 Apr 2021 in math.AG, math.AC, and math.CO | (2104.09589v2)

Abstract: We study a class of combinatorially-defined polynomial ideals which are generated by minors of a generic symmetric matrix. Included within this class are the symmetric determinantal ideals, the symmetric ladder determinantal ideals, and the symmetric Schubert determinantal ideals of A. Fink, J. Rajchgot, and S. Sullivant. Each ideal in our class is a type C analog of a Kazhdan-Lusztig ideal of A. Woo and A. Yong; that is, it is the scheme-theoretic defining ideal of the intersection of a type C Schubert variety with a type C opposite Schubert cell, appropriately coordinatized. The Kazhdan-Lusztig ideals that arise are exactly those where the opposite cell is $123$-avoiding. Our main results include Gr\"obner bases for these ideals, prime decompositions of their initial ideals (which are Stanley-Reisner ideals of subword complexes) and combinatorial formulas for their multigraded Hilbert series in terms of pipe dreams.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.