Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Real Liouvillian Extensions of Partial Differential Fields (2104.09548v3)

Published 19 Apr 2021 in math.RA and math.DS

Abstract: In this paper, we establish Galois theory for partial differential systems defined over formally real differential fields with a real closed field of constants and over formally $p$-adic differential fields with a $p$-adically closed field of constants. For an integrable partial differential system defined over such a field, we prove that there exists a formally real (resp. formally $p$-adic) Picard-Vessiot extension. Moreover, we obtain a uniqueness result for this Picard-Vessiot extension. We give an adequate definition of the Galois differential group and obtain a Galois fundamental theorem in this setting. We apply the obtained Galois correspondence to characterise formally real Liouvillian extensions of real partial differential fields with a real closed field of constants by means of split solvable linear algebraic groups. We present some examples of real dynamical systems and indicate some possibilities of further development of algebraic methods in real dynamical systems.

Summary

We haven't generated a summary for this paper yet.