Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-shot learning via tensor hallucination (2104.09467v1)

Published 19 Apr 2021 in cs.CV

Abstract: Few-shot classification addresses the challenge of classifying examples given only limited labeled data. A powerful approach is to go beyond data augmentation, towards data synthesis. However, most of data augmentation/synthesis methods for few-shot classification are overly complex and sophisticated, e.g. training a wGAN with multiple regularizers or training a network to transfer latent diversities from known to novel classes. We make two contributions, namely we show that: (1) using a simple loss function is more than enough for training a feature generator in the few-shot setting; and (2) learning to generate tensor features instead of vector features is superior. Extensive experiments on miniImagenet, CUB and CIFAR-FS datasets show that our method sets a new state of the art, outperforming more sophisticated few-shot data augmentation methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Michalis Lazarou (10 papers)
  2. Yannis Avrithis (48 papers)
  3. Tania Stathaki (27 papers)
Citations (4)