Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unimodular rows over monoid extensions of overrings of polynomial rings (2104.09383v1)

Published 19 Apr 2021 in math.AC

Abstract: Let $R$ be a commutative Noetherian ring of dimension $d$ and $M$ a commutative cancellative torsion-free seminormal monoid. Then (1) Let $A$ be a ring of type $R[d,m,n]$ and $P$ be a projective $A[M]$-module of rank $r \geq max{2,d+1}$. Then the action of $E(A[M] \oplus P)$ on $Um(A[M] \oplus P)$ is transitive and (2) Assume $(R, m, K)$ is a regular local ring containing a field $k$ such that either $char$ $k=0$ or $ char$ $k = p$ and $tr$-$deg$ $K/\mathbb{F}_p \geq 1$. Let $A$ be a ring of type $R[d,m,n]*$ and $f\in R$ be a regular parameter. Then all finitely generated projective modules over $A[M],$ $A[M]_f$ and $A[M] \otimes_R R(T)$ are free. When $M$ is free both results are due to Keshari and Lokhande.

Summary

We haven't generated a summary for this paper yet.