Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reference-based Weak Supervision for Answer Sentence Selection using Web Data (2104.08943v1)

Published 18 Apr 2021 in cs.CL, cs.AI, and cs.IR

Abstract: Answer sentence selection (AS2) modeling requires annotated data, i.e., hand-labeled question-answer pairs. We present a strategy to collect weakly supervised answers for a question based on its reference to improve AS2 modeling. Specifically, we introduce Reference-based Weak Supervision (RWS), a fully automatic large-scale data pipeline that harvests high-quality weakly-supervised answers from abundant Web data requiring only a question-reference pair as input. We study the efficacy and robustness of RWS in the setting of TANDA, a recent state-of-the-art fine-tuning approach specialized for AS2. Our experiments indicate that the produced data consistently bolsters TANDA. We achieve the state of the art in terms of P@1, 90.1%, and MAP, 92.9%, on WikiQA.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Vivek Krishnamurthy (1 paper)
  2. Thuy Vu (13 papers)
  3. Alessandro Moschitti (48 papers)
Citations (1)