Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundaries of graphs of relatively hyperbolic groups with cyclic edge groups (2104.08843v2)

Published 18 Apr 2021 in math.GR

Abstract: We prove that the fundamental group of a finite graph of convergence groups with parabolic edge groups is a convergence group. Using this result, under some mild assumptions, we prove a combination theorem for a graph of convergence groups with dynamically quasi-convex edge groups (Theorem 1.3). To prove these results, we use a modification of Dahmani's technique [Dah03]. Then we show that the fundamental group of a graph of relatively hyperbolic groups with edge groups either parabolic or infinite cyclic is relatively hyperbolic and construct Bowditch boundary. Finally, we show that the homeomorphism type of Bowditch boundary of the fundamental group of a graph of relatively hyperbolic groups with parabolic edge groups is determined by the homeomorphism type of the Bowditch boundaries of vertex groups (under some additional hypotheses)(Theorem 7.1). In the last section of the paper, we give some applications and examples.

Summary

We haven't generated a summary for this paper yet.