Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

ASBERT: Siamese and Triplet network embedding for open question answering (2104.08558v1)

Published 17 Apr 2021 in cs.IR

Abstract: Answer selection (AS) is an essential subtask in the field of natural language processing with an objective to identify the most likely answer to a given question from a corpus containing candidate answer sentences. A common approach to address the AS problem is to generate an embedding for each candidate sentence and query. Then, select the sentence whose vector representation is closest to the query's. A key drawback is the low quality of the embeddings, hitherto, based on its performance on AS benchmark datasets. In this work, we present ASBERT, a framework built on the BERT architecture that employs Siamese and Triplet neural networks to learn an encoding function that maps a text to a fixed-size vector in an embedded space. The notion of distance between two points in this space connotes similarity in meaning between two texts. Experimental results on the WikiQA and TrecQA datasets demonstrate that our proposed approach outperforms many state-of-the-art baseline methods.

Citations (2)

Summary

We haven't generated a summary for this paper yet.