Papers
Topics
Authors
Recent
2000 character limit reached

Why Machine Learning Integrated Patient Flow Simulation?

Published 16 Apr 2021 in cs.LG, cs.AI, and cs.MA | (2104.08203v1)

Abstract: Patient flow analysis can be studied from a clinical and or operational perspective using simulation. Traditional statistical methods such as stochastic distribution methods have been used to construct patient flow simulation submodels such as patient inflow, Length of Stay (LoS), Cost of Treatment (CoT) and Clinical Pathway (CP) models. However, patient inflow demonstrates seasonality, trend and variation over time. LoS, CoT and CP are significantly determined by attributes of patients and clinical and laboratory test results. For this reason, patient flow simulation models constructed using traditional statistical methods are criticized for ignoring heterogeneity and their contribution to personalized and value based healthcare. On the other hand, machine learning methods have proven to be efficient to study and predict admission rate, LoS, CoT, and CP. This paper, hence, describes why coupling machine learning with patient flow simulation is important and proposes a conceptual architecture that shows how to integrate machine learning with patient flow simulation.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.