Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Empirical Study of Graph-Based Approaches for Semi-Supervised Time Series Classification (2104.08153v2)

Published 16 Apr 2021 in cs.LG, cs.NA, and math.NA

Abstract: Time series data play an important role in many applications and their analysis reveals crucial information for understanding the underlying processes. Among the many time series learning tasks of great importance, we here focus on semi-supervised learning based on a graph representation of the data. Two main aspects are involved in this task. A suitable distance measure to evaluate the similarities between time series, and a learning method to make predictions based on these distances. However, the relationship between the two aspects has never been studied systematically in the context of graph-based learning. We describe four different distance measures, including (Soft) DTW and MPDist, a distance measure based on the Matrix Profile, as well as four successful semi-supervised learning methods, including the graph Allen--Cahn method and a Graph Convolutional Neural Network. We then compare the performance of the algorithms on binary classification data sets. In our findings we compare the chosen graph-based methods using all distance measures and observe that the results vary strongly with respect to the accuracy. As predicted by the ``no free lunch'' theorem, no clear best combination to employ in all cases is found. Our study provides a reproducible framework for future work in the direction of semi-supervised learning for time series with a focus on graph representations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.