Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

KI-BERT: Infusing Knowledge Context for Better Language and Domain Understanding (2104.08145v2)

Published 9 Apr 2021 in cs.CL, cs.AI, and cs.LG

Abstract: Contextualized entity representations learned by state-of-the-art transformer-based LLMs (TLMs) like BERT, GPT, T5, etc., leverage the attention mechanism to learn the data context from training data corpus. However, these models do not use the knowledge context. Knowledge context can be understood as semantics about entities and their relationship with neighboring entities in knowledge graphs. We propose a novel and effective technique to infuse knowledge context from multiple knowledge graphs for conceptual and ambiguous entities into TLMs during fine-tuning. It projects knowledge graph embeddings in the homogeneous vector-space, introduces new token-types for entities, aligns entity position ids, and a selective attention mechanism. We take BERT as a baseline model and implement the "Knowledge-Infused BERT" by infusing knowledge context from ConceptNet and WordNet, which significantly outperforms BERT and other recent knowledge-aware BERT variants like ERNIE, SenseBERT, and BERT_CS over eight different subtasks of GLUE benchmark. The KI-BERT-base model even significantly outperforms BERT-large for domain-specific tasks like SciTail and academic subsets of QQP, QNLI, and MNLI.

Citations (27)

Summary

We haven't generated a summary for this paper yet.