Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Variable-Length Textual Adversarial Attacks (2104.08139v1)

Published 16 Apr 2021 in cs.CL

Abstract: Adversarial attacks have shown the vulnerability of machine learning models, however, it is non-trivial to conduct textual adversarial attacks on natural language processing tasks due to the discreteness of data. Most previous approaches conduct attacks with the atomic \textit{replacement} operation, which usually leads to fixed-length adversarial examples and therefore limits the exploration on the decision space. In this paper, we propose variable-length textual adversarial attacks~(VL-Attack) and integrate three atomic operations, namely \textit{insertion}, \textit{deletion} and \textit{replacement}, into a unified framework, by introducing and manipulating a special \textit{blank} token while attacking. In this way, our approach is able to more comprehensively find adversarial examples around the decision boundary and effectively conduct adversarial attacks. Specifically, our method drops the accuracy of IMDB classification by $96\%$ with only editing $1.3\%$ tokens while attacking a pre-trained BERT model. In addition, fine-tuning the victim model with generated adversarial samples can improve the robustness of the model without hurting the performance, especially for length-sensitive models. On the task of non-autoregressive machine translation, our method can achieve $33.18$ BLEU score on IWSLT14 German-English translation, achieving an improvement of $1.47$ over the baseline model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Junliang Guo (39 papers)
  2. Zhirui Zhang (46 papers)
  3. Linlin Zhang (16 papers)
  4. Linli Xu (33 papers)
  5. Boxing Chen (67 papers)
  6. Enhong Chen (242 papers)
  7. Weihua Luo (63 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.