Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Zero-cycle groups on algebraic varieties (2104.07968v2)

Published 16 Apr 2021 in math.AG

Abstract: We compare various groups of 0-cycles on quasi-projective varieties over a field. As applications, we show that for certain singular projective varieties, the Levine-Weibel Chow group of 0-cycles coincides with the corresponding Friedlander-Voevodsky motivic cohomology. We also show that over an algebraically closed field of positive characteristic, the Chow group of 0-cycles with modulus on a smooth projective variety with respect to a reduced divisor coincides with the Suslin homology of the complement of the divisor. We prove several generalizations of the finiteness theorem of Saito and Sato for the Chow group of 0-cycles over $p$-adic fields. We also use these results to deduce a torsion theorem for Suslin homology which extends a result of Bloch to open varieties.

Summary

We haven't generated a summary for this paper yet.