Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Novel Hybrid Deep Learning Approach for Non-Intrusive Load Monitoring of Residential Appliance Based on Long Short Term Memory and Convolutional Neural Networks (2104.07809v1)

Published 15 Apr 2021 in cs.LG, cs.SY, and eess.SY

Abstract: Energy disaggregation or nonintrusive load monitoring (NILM), is a single-input blind source discrimination problem, aims to interpret the mains user electricity consumption into appliance level measurement. This article presents a new approach for power disaggregation by using a deep recurrent long short term memory (LSTM) network combined with convolutional neural networks (CNN). Deep neural networks have been shown to be a significant way for these types of problems because of their complexity and huge number of trainable paramters. Hybrid method that proposed in the article could significantly increase the overall accuracy of NILM because it benefits from both network advantages. The proposed method used sequence-to-sequence learning, where the input is a window of the mains and the output is a window of the target appliance. The proposed deep neural network approach has been applied to real-world household energy dataset "REFIT". The REFIT electrical load measurements dataset described in this paper includes whole house aggregate loads and nine individual appliance measurements at 8-second intervals per house, collected continuously over a period of two years from 20 houses around the UK. The proposed method achieve significant performance, improving accuracy and F1-score measures by 95.93% and 80.93% ,respectively which demonstrates the effectiveness and superiority of the proposed approach for home energy monitoring. Comparison of proposed method and other recently published method has been presented and discussed based on accuracy, number of considered appliances and size of the deep neural network trainable parameters. The proposed method shows remarkable performance compare to other previous methods.

Citations (1)

Summary

We haven't generated a summary for this paper yet.