Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inexact-Proximal Accelerated Gradient Method for Stochastic Nonconvex Constrained Optimization Problems (2104.07796v3)

Published 15 Apr 2021 in math.OC

Abstract: Stochastic nonconvex optimization problems with nonlinear constraints have a broad range of applications in intelligent transportation, cyber-security, and smart grids. In this paper, first, we propose an inexact-proximal accelerated gradient method to solve a nonconvex stochastic composite optimization problem where the objective is the sum of smooth and nonsmooth functions, the constraint functions are assumed to be deterministic and the solution to the proximal map of the nonsmooth part is calculated inexactly at each iteration. We demonstrate an asymptotic sublinear rate of convergence for stochastic settings using increasing sample-size considering the error in the proximal operator diminishes at an appropriate rate. Then we customize the proposed method for solving stochastic nonconvex optimization problems with nonlinear constraints and demonstrate a convergence rate guarantee. Numerical results show the effectiveness of the proposed algorithm.

Summary

We haven't generated a summary for this paper yet.