Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spectral MVIR: Joint Reconstruction of 3D Shape and Spectral Reflectance (2104.07308v1)

Published 15 Apr 2021 in cs.CV

Abstract: Reconstructing an object's high-quality 3D shape with inherent spectral reflectance property, beyond typical device-dependent RGB albedos, opens the door to applications requiring a high-fidelity 3D model in terms of both geometry and photometry. In this paper, we propose a novel Multi-View Inverse Rendering (MVIR) method called Spectral MVIR for jointly reconstructing the 3D shape and the spectral reflectance for each point of object surfaces from multi-view images captured using a standard RGB camera and low-cost lighting equipment such as an LED bulb or an LED projector. Our main contributions are twofold: (i) We present a rendering model that considers both geometric and photometric principles in the image formation by explicitly considering camera spectral sensitivity, light's spectral power distribution, and light source positions. (ii) Based on the derived model, we build a cost-optimization MVIR framework for the joint reconstruction of the 3D shape and the per-vertex spectral reflectance while estimating the light source positions and the shadows. Different from most existing spectral-3D acquisition methods, our method does not require expensive special equipment and cumbersome geometric calibration. Experimental results using both synthetic and real-world data demonstrate that our Spectral MVIR can acquire a high-quality 3D model with accurate spectral reflectance property.

Citations (9)

Summary

We haven't generated a summary for this paper yet.