Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Getting the Lay of the Land in Discrete Space: A Survey of Metric Dimension and its Applications (2104.07201v1)

Published 15 Apr 2021 in math.CO

Abstract: The metric dimension of a graph is the smallest number of nodes required to identify all other nodes based on shortest path distances uniquely. Applications of metric dimension include discovering the source of a spread in a network, canonically labeling graphs, and embedding symbolic data in low-dimensional Euclidean spaces. This survey gives a self-contained introduction to metric dimension and an overview of the quintessential results and applications. We discuss methods for approximating the metric dimension of general graphs, and specific bounds and asymptotic behavior for deterministic and random families of graphs. We conclude with related concepts and directions for future work.

Summary

We haven't generated a summary for this paper yet.