Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A fast and Accurate Similarity-constrained Subspace Clustering Framework for Unsupervised Hyperspectral Image Classification (2104.06975v2)

Published 14 Apr 2021 in eess.IV

Abstract: Accurate land cover segmentation of spectral images is challenging and has drawn widespread attention in remote sensing due to its inherent complexity. Although significant efforts have been made for developing a variety of methods, most of them rely on supervised strategies. Subspace clustering methods, such as Sparse Subspace Clustering (SSC), have become a popular tool for unsupervised learning due to their high performance. However, the computational complexity of SSC methods prevents their use on large spectral remotely sensed datasets. Furthermore, since SSC ignores the spatial information in the spectral images, its discrimination capability is limited, hampering the clustering results' spatial homogeneity. To address these two relevant issues, in this paper, we propose a fast algorithm that obtains a sparse representation coefficient matrix by first selecting a small set of pixels that best represent their neighborhood. Then, it performs spatial filtering to enforce the connectivity of neighboring pixels and uses fast spectral clustering to get the final segmentation. Extensive simulations with our method demonstrate its effectiveness in land cover segmentation, obtaining remarkable high clustering performance compared with state-of-the-art SSC-based algorithms and even novel unsupervised-deep-learning-based methods. Besides, the proposed method is up to three orders of magnitude faster than SSC when clustering more than $2 \times 104$ spectral pixels.

Citations (19)

Summary

We haven't generated a summary for this paper yet.