Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving the Accuracy and Consistency of the Scalar Auxiliary Variable (SAV) Method with Relaxation (2104.06620v1)

Published 14 Apr 2021 in math.NA and cs.NA

Abstract: The scalar auxiliary variable (SAV) method was introduced by Shen et al. and has been broadly used to solve thermodynamically consistent PDE problems. By utilizing scalar auxiliary variables, the original PDE problems are reformulated into equivalent PDE problems. The advantages of the SAV approach, such as linearity, unconditionally energy stability, and easy-to-implement, are prevalent. However, there is still an open issue unresolved, i.e., the numerical schemes resulted from the SAV method preserve a "modified" energy law according to the auxiliary variables instead of the original variables. Truncation errors are introduced during numerical calculations so that the numerical solutions of the auxiliary variables are no longer equivalent to their original continuous definitions. In other words, even though the SAV scheme satisfies a modified energy law, it does not necessarily satisfy the energy law of the original PDE models. This paper presents one essential relaxation technique to overcome this issue, which we named the relaxed-SAV (RSAV) method. Our RSAV method penalizes the numerical errors of the auxiliary variables by a relaxation technique. In general, the RSAV method keeps all the advantages of the baseline SAV method and improves its accuracy and consistency noticeably. Several examples have been presented to demonstrate the effectiveness of the RSAV approach.

Citations (110)

Summary

We haven't generated a summary for this paper yet.