Newton-based methods for finding the positive ground state of Gross-Pitaevskii equations
Abstract: The discretization of Gross-Pitaevskii equations (GPE) leads to a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). In this paper, we use two Newton-based methods to compute the positive ground state of GPE. The first method comes from the Newton-Noda iteration for saturable nonlinear Schr\"odinger equations proposed by Liu, which can be transferred to GPE naturally. The second method combines the idea of the Bisection method and the idea of Newton method, in which, each subproblem involving block tridiagonal linear systems can be solved easily. We give an explicit convergence and computational complexity analysis for it. Numerical experiments are provided to support the theoretical results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.