Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
175 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Tractable robust MPC design based on nominal predictions (2104.06088v2)

Published 13 Apr 2021 in eess.SY, cs.SY, and math.OC

Abstract: Many popular approaches in the field of robust model predictive control (MPC) are based on nominal predictions. This paper presents a novel formulation of this class of controller with proven input-to-state stability and robust constraint satisfaction. Its advantages are: (i) the design of its main ingredients are tractable for medium to large-sized systems, (ii) the terminal set does not need to be robust with respect to all the possible system uncertainties, but only for a reduced set that can be made arbitrarily small, thus facilitating its design and implementation, (iii) under certain conditions the terminal set can be taken as a positive invariant set of the nominal system, allowing us to use a terminal equality constraint, which facilitates its application to large-scale systems, and (iv) the complexity of its optimization problem is comparable to the non-robust MPC variant. We show numerical closed-loop results of its application to a multivariable chemical plant and compare it against other robust MPC formulations.

Citations (5)

Summary

We haven't generated a summary for this paper yet.