Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Asymptotic distributions for weighted power sums of extreme values (2104.04863v1)

Published 10 Apr 2021 in math.PR, math.ST, and stat.TH

Abstract: Let $X_{1,n}\le\cdots\le X_{n,n}$ be the order statistics of $n$ independent random variables with a common distribution function $F$ having right heavy tail with tail index $\gamma$. Given known constants $d_{i,n}$, $1\le i\le n$, consider the weighted power sums $\sum{k_n}{i=1}d{n+1-i,n}\logpX_{n+1-i,n}$, where $p>0$ and the $k_n$ are positive integers such that $k_n\to\infty$ and $k_n/n\to0$ as $n\to\infty$. Under some constraints on the weights $d_{i,n}$, we prove asymptotic normality for the power sums over the whole heavy-tail model. We apply the obtained result to construct a new class of estimators for the parameter $\gamma$.

Summary

We haven't generated a summary for this paper yet.