Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

End-to-end differentiable learning of turbulence models from indirect observations (2104.04821v1)

Published 10 Apr 2021 in physics.flu-dyn

Abstract: The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations. This paper demonstrates the viability of this approach and presents an end-to-end differentiable framework for training deep neural networks to learn eddy viscosity models from indirect observations derived from the velocity and pressure fields. The framework consists of a Reynolds-averaged Navier-Stokes (RANS) solver and a neural-network-represented turbulence model, each accompanied by its derivative computations. For computing the sensitivities of the indirect observations to the Reynolds stress field, we use the continuous adjoint equations for the RANS equations, while the gradient of the neural network is obtained via its built-in automatic differentiation capability. We demonstrate the ability of this approach to learn the true underlying turbulence closure when one exists by training models using synthetic velocity data from linear and nonlinear closures. We also train a linear eddy viscosity model using synthetic velocity measurements from direct numerical simulations of the Navier-Stokes equations for which no true underlying linear closure exists. The trained deep-neural-network turbulence model showed predictive capability on similar flows.

Citations (36)

Summary

We haven't generated a summary for this paper yet.