Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fixed-Posit: A Floating-Point Representation for Error-Resilient Applications (2104.04763v1)

Published 10 Apr 2021 in cs.AR

Abstract: Today, almost all computer systems use IEEE-754 floating point to represent real numbers. Recently, posit was proposed as an alternative to IEEE-754 floating point as it has better accuracy and a larger dynamic range. The configurable nature of posit, with varying number of regime and exponent bits, has acted as a deterrent to its adoption. To overcome this shortcoming, we propose fixed-posit representation where the number of regime and exponent bits are fixed, and present the design of a fixed-posit multiplier. We evaluate the fixed-posit multiplier on error-resilient applications of AxBench and OpenBLAS benchmarks as well as neural networks. The proposed fixed-posit multiplier has 47%, 38.5%, 22% savings for power, area and delay respectively when compared to posit multipliers and up to 70%, 66%, 26% savings in power, area and delay respectively when compared to 32-bit IEEE-754 multiplier. These savings are accompanied with minimal output quality loss (1.2% average relative error) across OpenBLAS and AxBench workloads. Further, for neural networks like ResNet-18 on ImageNet we observe a negligible accuracy loss (0.12%) on using the fixed-posit multiplier.

Citations (14)

Summary

We haven't generated a summary for this paper yet.