Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast optimization of viscosities for frequency-weighted damping of second-order systems (2104.04035v1)

Published 8 Apr 2021 in math.NA, cs.NA, and math.OC

Abstract: We consider frequency-weighted damping optimization for vibrating systems described by a second-order differential equation. The goal is to determine viscosity values such that eigenvalues are kept away from certain undesirable areas on the imaginary axis. To this end, we present two complementary techniques. First, we propose new frameworks using nonsmooth constrained optimization problems, whose solutions both damp undesirable frequency bands and maintain stability of the system. These frameworks also allow us to weight which frequency bands are the most important to damp. Second, we also propose a fast new eigensolver for the structured quadratic eigenvalue problems that appear in such vibrating systems. In order to be efficient, our new eigensolver exploits special properties of diagonal-plus-rank-one complex symmetric matrices, which we leverage by showing how each quadratic eigenvalue problem can be transformed into a short sequence of such linear eigenvalue problems. The result is an eigensolver that is substantially faster than standard techniques. By combining this new solver with our new optimization frameworks, we obtain our overall algorithm for fast computation of optimal viscosities. The efficiency and performance of our new methods are verified and illustrated on several numerical examples.

Citations (1)

Summary

We haven't generated a summary for this paper yet.