Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

RNN Transducer Models For Spoken Language Understanding (2104.03842v1)

Published 8 Apr 2021 in cs.CL, cs.LG, cs.SD, and eess.AS

Abstract: We present a comprehensive study on building and adapting RNN transducer (RNN-T) models for spoken language understanding(SLU). These end-to-end (E2E) models are constructed in three practical settings: a case where verbatim transcripts are available, a constrained case where the only available annotations are SLU labels and their values, and a more restrictive case where transcripts are available but not corresponding audio. We show how RNN-T SLU models can be developed starting from pre-trained automatic speech recognition (ASR) systems, followed by an SLU adaptation step. In settings where real audio data is not available, artificially synthesized speech is used to successfully adapt various SLU models. When evaluated on two SLU data sets, the ATIS corpus and a customer call center data set, the proposed models closely track the performance of other E2E models and achieve state-of-the-art results.

Citations (14)

Summary

We haven't generated a summary for this paper yet.