Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse NMF with Archetypal Regularization: Computational and Robustness Properties (2104.03527v2)

Published 8 Apr 2021 in stat.ML and cs.LG

Abstract: We consider the problem of sparse nonnegative matrix factorization (NMF) using archetypal regularization. The goal is to represent a collection of data points as nonnegative linear combinations of a few nonnegative sparse factors with appealing geometric properties, arising from the use of archetypal regularization. We generalize the notion of robustness studied in Javadi and Montanari (2019) (without sparsity) to the notions of (a) strong robustness that implies each estimated archetype is close to the underlying archetypes and (b) weak robustness that implies there exists at least one recovered archetype that is close to the underlying archetypes. Our theoretical results on robustness guarantees hold under minimal assumptions on the underlying data, and applies to settings where the underlying archetypes need not be sparse. We present theoretical results and illustrative examples to strengthen the insights underlying the notions of robustness. We propose new algorithms for our optimization problem; and present numerical experiments on synthetic and real data sets that shed further insights into our proposed framework and theoretical developments.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets