Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Variants of Optimal Feedback Policies (2104.02709v3)

Published 6 Apr 2021 in eess.SY, cs.RO, and cs.SY

Abstract: The stable combination of optimal feedback policies with online learning is studied in a new control-theoretic framework for uncertain nonlinear systems. The framework can be systematically used in transfer learning and sim-to-real applications, where an optimal policy learned for a nominal system needs to remain effective in the presence of significant variations in parameters. Given unknown parameters within a bounded range, the resulting adaptive control laws guarantee convergence of the closed-loop system to the state of zero cost. Online adjustment of the learning rate is used as a key stability mechanism, and preserves certainty equivalence when designing optimal policies without assuming uncertainty to be within the control range. The approach is illustrated on the familiar mountain car problem, where it yields near-optimal performance despite the presence of parametric model uncertainty.

Citations (4)

Summary

We haven't generated a summary for this paper yet.