Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Geometry of Grassmannians and optimal transport of quantum states (2104.02616v1)

Published 6 Apr 2021 in math.DG, math.FA, and math.MG

Abstract: Let $\mathsf{H}$ be a separable Hilbert space. We prove that the Grassmannian $\mathsf{P}_c(\mathsf{H})$ of the finite dimensional subspaces of $\mathsf{H}$ is an Alexandrov space of nonnegative curvature and we employ its metric geometry to develop the theory of optimal transport for the normal states of the von Neumann algebra of linear and bounded operators $\mathsf{B}(\mathsf{H})$. Seeing density matrices as discrete probability measures on $\mathsf{P}_c(\mathsf{H})$ (via the spectral theorem) we define an optimal transport cost and the Wasserstein distance for normal states. In particular we obtain a cost which induces the $w*$-topology. Our construction is compatible with the quantum mechanics approach of composite systems as tensor products $\mathsf{H}\otimes \mathsf{H}$. We provide indeed an interpretation of the pure normal states of $\mathsf{B}(\mathsf{H}\otimes \mathsf{H})$ as families of transport maps. This also defines a Wasserstein cost for the pure normal states of $\mathsf{B}(\mathsf{H}\otimes \mathsf{H})$, reconciling with our proposal.

Summary

We haven't generated a summary for this paper yet.