Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Weakly-supervised Audio-visual Sound Source Detection and Separation (2104.02606v1)

Published 25 Mar 2021 in cs.CV, cs.SD, eess.AS, and eess.IV

Abstract: Learning how to localize and separate individual object sounds in the audio channel of the video is a difficult task. Current state-of-the-art methods predict audio masks from artificially mixed spectrograms, known as Mix-and-Separate framework. We propose an audio-visual co-segmentation, where the network learns both what individual objects look and sound like, from videos labeled with only object labels. Unlike other recent visually-guided audio source separation frameworks, our architecture can be learned in an end-to-end manner and requires no additional supervision or bounding box proposals. Specifically, we introduce weakly-supervised object segmentation in the context of sound separation. We also formulate spectrogram mask prediction using a set of learned mask bases, which combine using coefficients conditioned on the output of object segmentation , a design that facilitates separation. Extensive experiments on the MUSIC dataset show that our proposed approach outperforms state-of-the-art methods on visually guided sound source separation and sound denoising.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Tanzila Rahman (10 papers)
  2. Leonid Sigal (102 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.