Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Transformation of Common Actions into Time and Space (2104.02439v1)

Published 6 Apr 2021 in cs.CV

Abstract: This paper introduces the task of few-shot common action localization in time and space. Given a few trimmed support videos containing the same but unknown action, we strive for spatio-temporal localization of that action in a long untrimmed query video. We do not require any class labels, interval bounds, or bounding boxes. To address this challenging task, we introduce a novel few-shot transformer architecture with a dedicated encoder-decoder structure optimized for joint commonality learning and localization prediction, without the need for proposals. Experiments on our reorganizations of the AVA and UCF101-24 datasets show the effectiveness of our approach for few-shot common action localization, even when the support videos are noisy. Although we are not specifically designed for common localization in time only, we also compare favorably against the few-shot and one-shot state-of-the-art in this setting. Lastly, we demonstrate that the few-shot transformer is easily extended to common action localization per pixel.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Pengwan Yang (6 papers)
  2. Pascal Mettes (52 papers)
  3. Cees G. M. Snoek (134 papers)
Citations (9)

Summary

We haven't generated a summary for this paper yet.