Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniting Heterogeneity, Inductiveness, and Efficiency for Graph Representation Learning (2104.01711v2)

Published 4 Apr 2021 in cs.SI and cs.LG

Abstract: With the ubiquitous graph-structured data in various applications, models that can learn compact but expressive vector representations of nodes have become highly desirable. Recently, bearing the message passing paradigm, graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs. However, a majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs with various types of nodes and edges. Also, despite the necessity of inductively producing representations for completely new nodes (e.g., in streaming scenarios), few heterogeneous GNNs can bypass the transductive learning scheme where all nodes must be known during training. Furthermore, the training efficiency of most heterogeneous GNNs has been hindered by their sophisticated designs for extracting the semantics associated with each meta path or relation. In this paper, we propose WIde and DEep message passing Network (WIDEN) to cope with the aforementioned problems about heterogeneity, inductiveness, and efficiency that are rarely investigated together in graph representation learning. In WIDEN, we propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes. To further improve the training efficiency, we innovatively present an active downsampling strategy that drops unimportant neighbor nodes to facilitate faster information propagation. Experiments on three real-world heterogeneous graphs have further validated the efficacy of WIDEN on both transductive and inductive node representation learning, as well as the superior training efficiency against state-of-the-art baselines.

Citations (4)

Summary

We haven't generated a summary for this paper yet.