Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Low Dose Helical CBCT denoising by using domain filtering with deep reinforcement learning (2104.00889v1)

Published 2 Apr 2021 in cs.CV and cs.AI

Abstract: Cone Beam Computed Tomography(CBCT) is a now known method to conduct CT imaging. Especially, The Low Dose CT imaging is one of possible options to protect organs of patients when conducting CT imaging. Therefore Low Dose CT imaging can be an alternative instead of Standard dose CT imaging. However Low Dose CT imaging has a fundamental issue with noises within results compared to Standard Dose CT imaging. Currently, there are lots of attempts to erase the noises. Most of methods with artificial intelligence have many parameters and unexplained layers or a kind of black-box methods. Therefore, our research has purposes related to these issues. Our approach has less parameters than usual methods by having Iterative learn-able bilateral filtering approach with Deep reinforcement learning. And we applied The Iterative learn-able filtering approach with deep reinforcement learning to sinograms and reconstructed volume domains. The method and the results of the method can be much more explainable than The other black box AI approaches. And we applied the method to Helical Cone Beam Computed Tomography(CBCT), which is the recent CBCT trend. We tested this method with on 2 abdominal scans(L004, L014) from Mayo Clinic TCIA dataset. The results and the performances of our approach overtake the results of the other previous methods.

Summary

We haven't generated a summary for this paper yet.