Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Schrödinger model, Fock model and intertwining Segal-Bargmann transform for the exceptional Lie superalgebra $D(2,1;α)$ (2104.00326v1)

Published 1 Apr 2021 in math.RT

Abstract: We construct two infinite-dimensional irreducible representations for $D(2,1;\alpha)$: a Schr\"odinger model and a Fock model. Further, we also introduce an intertwining isomorphism. These representations are similar to the minimal representations constructed for the orthosymplectic Lie supergroup and for Hermitian Lie groups of tube type. The intertwining isomorphism is the analogue of the Segal-Bargmann transform for the orthosymplectic Lie supergroup and for Hermitian Lie groups of tube type.

Summary

We haven't generated a summary for this paper yet.