Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The critical two-point function for long-range percolation on the hierarchical lattice (2103.17013v1)

Published 31 Mar 2021 in math.PR, math-ph, and math.MP

Abstract: We prove up-to-constants bounds on the two-point function (i.e., point-to-point connection probabilities) for critical long-range percolation on the $d$-dimensional hierarchical lattice. More precisely, we prove that if we connect each pair of points $x$ and $y$ by an edge with probability $1-\exp(-\beta|x-y|{-d-\alpha})$, where $0<\alpha<d$ is fixed and $\beta\geq 0$ is a parameter, then the critical two-point function satisfies \[ \mathbb{P}_{\beta_c}(x\leftrightarrow y) \asymp \|x-y\|^{-d+\alpha} \] for every pair of distinct points $x$ and $y$. We deduce in particular that the model has mean-field critical behaviour when $\alpha<d/3$ and does not have mean-field critical behaviour when $\alpha>d/3$.

Summary

We haven't generated a summary for this paper yet.