Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Safe Model-based Control from Signal Temporal Logic Specifications Using Recurrent Neural Networks (2103.15938v4)

Published 29 Mar 2021 in eess.SY, cs.LG, and cs.SY

Abstract: We propose a policy search approach to learn controllers from specifications given as Signal Temporal Logic (STL) formulae. The system model, which is unknown but assumed to be an affine control system, is learned together with the control policy. The model is implemented as two feedforward neural networks (FNNs) - one for the drift, and one for the control directions. To capture the history dependency of STL specifications, we use a recurrent neural network (RNN) to implement the control policy. In contrast to prevalent model-free methods, the learning approach proposed here takes advantage of the learned model and is more efficient. We use control barrier functions (CBFs) with the learned model to improve the safety of the system. We validate our algorithm via simulations and experiments. The results show that our approach can satisfy the given specification within very few system runs, and can be used for on-line control.

Citations (5)

Summary

We haven't generated a summary for this paper yet.