Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning Domain Invariant Representations for Generalizable Person Re-Identification

Published 29 Mar 2021 in cs.CV and cs.LG | (2103.15890v4)

Abstract: Generalizable person Re-Identification (ReID) has attracted growing attention in recent computer vision community. In this work, we construct a structural causal model among identity labels, identity-specific factors (clothes/shoes color etc), and domain-specific factors (background, viewpoints etc). According to the causal analysis, we propose a novel Domain Invariant Representation Learning for generalizable person Re-Identification (DIR-ReID) framework. Specifically, we first propose to disentangle the identity-specific and domain-specific feature spaces, based on which we propose an effective algorithmic implementation for backdoor adjustment, essentially serving as a causal intervention towards the SCM. Extensive experiments have been conducted, showing that DIR-ReID outperforms state-of-the-art methods on large-scale domain generalization ReID benchmarks.

Citations (36)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.