Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Dynamically Modelling Heterogeneous Higher-Order Interactions for Malicious Behavior Detection in Event Logs (2103.15708v2)

Published 29 Mar 2021 in cs.CR

Abstract: Anomaly detection in event logs is a promising approach for intrusion detection in enterprise networks. By building a statistical model of usual activity, it aims to detect multiple kinds of malicious behavior, including stealthy tactics, techniques and procedures (TTPs) designed to evade signature-based detection systems. However, finding suitable anomaly detection methods for event logs remains an important challenge. This results from the very complex, multi-faceted nature of the data: event logs are not only combinatorial, but also temporal and heterogeneous data, thus they fit poorly in most theoretical frameworks for anomaly detection. Most previous research focuses on either one of these three aspects, building a simplified representation of the data that can be fed to standard anomaly detection algorithms. In contrast, we propose to simultaneously address all three of these characteristics through a specifically tailored statistical model. We introduce \textsc{Decades}, a \underline{d}ynamic, h\underline{e}terogeneous and \underline{c}ombinatorial model for \underline{a}nomaly \underline{d}etection in \underline{e}vent \underline{s}treams, and we demonstrate its effectiveness at detecting malicious behavior through experiments on a real dataset containing labelled red team activity. In particular, we empirically highlight the importance of handling the multiple characteristics of the data by comparing our model with state-of-the-art baselines relying on various data representations.

Citations (2)

Summary

We haven't generated a summary for this paper yet.