Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A generalization of Kruskal's theorem on tensor decomposition (2103.15633v2)

Published 29 Mar 2021 in math.CO

Abstract: Kruskal's theorem states that a sum of product tensors constitutes a unique tensor rank decomposition if the so-called k-ranks of the product tensors are large. We prove a "splitting theorem" for sets of product tensors, in which the k-rank condition of Kruskal's theorem is weakened to the standard notion of rank, and the conclusion of uniqueness is relaxed to the statement that the set of product tensors splits (i.e. is disconnected as a matroid). Our splitting theorem implies a generalization of Kruskal's theorem. While several extensions of Kruskal's theorem are already present in the literature, all of these use Kruskal's original permutation lemma, and hence still cannot certify uniqueness when the k-ranks are below a certain threshold. Our generalization uses a completely new proof technique, contains many of these extensions, and can certify uniqueness below this threshold. We obtain several other useful results on tensor decompositions as consequences of our splitting theorem. We prove sharp lower bounds on tensor rank and Waring rank, which extend Sylvester's matrix rank inequality to tensors. We also prove novel uniqueness results for non-rank tensor decompositions.

Summary

We haven't generated a summary for this paper yet.