Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Backpropagation Through Time For Networks With Long-Term Dependencies (2103.15589v2)

Published 26 Mar 2021 in cs.LG

Abstract: Backpropagation through time (BPTT) is a technique of updating tuned parameters within recurrent neural networks (RNNs). Several attempts at creating such an algorithm have been made including: Nth Ordered Approximations and Truncated-BPTT. These methods approximate the backpropagation gradients under the assumption that the RNN only utilises short-term dependencies. This is an acceptable assumption to make for the current state of artificial neural networks. As RNNs become more advanced, a shift towards influence by long-term dependencies is likely. Thus, a new method for backpropagation is required. We propose using the 'discrete forward sensitivity equation' and a variant of it for single and multiple interacting recurrent loops respectively. This solution is exact and also allows the network's parameters to vary between each subsequent step, however it does require the computation of a Jacobian.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. George Bird (2 papers)
  2. Maxim E. Polivoda (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.