Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
124 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Heterogeneous Objectives: State-of-the-Art and Future Research (2103.15546v1)

Published 26 Feb 2021 in cs.NE, cs.LG, and math.OC

Abstract: Multiobjective optimization problems with heterogeneous objectives are defined as those that possess significantly different types of objective function components (not just incommensurable in units or scale). For example, in a heterogeneous problem the objective function components may differ in formal computational complexity, practical evaluation effort (time, costs, or resources), determinism (stochastic vs deterministic), or some combination of all three. A particularly challenging variety of heterogeneity may occur by the combination of a time-consuming laboratory-based objective with other objectives that are evaluated using faster computer-based calculations. Perhaps more commonly, all objectives may be evaluated computationally, but some may require a lengthy simulation process while others are computed from a relatively simple closed-form calculation. In this chapter, we motivate the need for more work on the topic of heterogeneous objectives (with reference to real-world examples), expand on a basic taxonomy of heterogeneity types, and review the state of the art in tackling these problems. We give special attention to heterogeneity in evaluation time (latency) as this requires sophisticated approaches. We also present original experimental work on estimating the amount of heterogeneity in evaluation time expected in many-objective problems, given reasonable assumptions, and survey related research threads that could contribute to this area in future.

Citations (11)

Summary

We haven't generated a summary for this paper yet.