Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Function Field Approach Toward Good Polynomials for Further Results on Optimal LRC Codes (2103.15443v3)

Published 29 Mar 2021 in cs.IT and math.IT

Abstract: Because of the recent applications to distributed storage systems, researchers have introduced a new class of block codes, i.e., locally recoverable (LRC) codes. LRC codes can recover information from erasure(s) by accessing a small number of erasure-free code symbols and increasing the efficiency of repair processes in large-scale distributed storage systems. In this context, Tamo and Barg first gave a breakthrough by cleverly introducing a good polynomial notion. Constructing good polynomials for locally recoverable codes achieving Singleton-type bound (called optimal codes) is challenging and has attracted significant attention in recent years. This article aims to increase our knowledge of good polynomials for optimal LRC codes. Using tools from algebraic function fields and Galois theory, we continue investigating those polynomials and studying them by developing the Galois theoretical approach initiated by Micheli in 2019. Specifically, we push further the study of a crucial parameter $\mathcal G(f)$ (of a given polynomial $f$), which measures how much a polynomial is "good" in the sense of LRC codes. We provide some characterizations of polynomials with minimal Galois groups and prove some properties of finite fields where polynomials exist with a specific size of Galois groups. We also present some explicit shapes of polynomials with small Galois groups. For some particular polynomials $f$, we give the exact formula of $\mathcal G(f)$.

Citations (4)

Summary

We haven't generated a summary for this paper yet.