Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empirical Welfare Maximization with Constraints (2103.15298v2)

Published 29 Mar 2021 in econ.EM

Abstract: Empirical Welfare Maximization (EWM) is a framework that can be used to select welfare program eligibility policies based on data. This paper extends EWM by allowing for uncertainty in estimating the budget needed to implement the selected policy, in addition to its welfare. Due to the additional estimation error, I show there exist no rules that achieve the highest welfare possible while satisfying a budget constraint uniformly over a wide range of DGPs. This differs from the setting without a budget constraint where uniformity is achievable. I propose an alternative trade-off rule and illustrate it with Medicaid expansion, a setting with imperfect take-up and varying program costs.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com