Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Transitional Learning: Exploring the Transition States of Degradation for Blind Super-resolution (2103.15290v2)

Published 29 Mar 2021 in cs.CV

Abstract: Being extremely dependent on iterative estimation of the degradation prior or optimization of the model from scratch, the existing blind super-resolution (SR) methods are generally time-consuming and less effective, as the estimation of degradation proceeds from a blind initialization and lacks interpretable degradation priors. To address it, this paper proposes a transitional learning method for blind SR using an end-to-end network without any additional iterations in inference, and explores an effective representation for unknown degradation. To begin with, we analyze and demonstrate the transitionality of degradations as interpretable prior information to indirectly infer the unknown degradation model, including the widely used additive and convolutive degradations. We then propose a novel Transitional Learning method for blind Super-Resolution (TLSR), by adaptively inferring a transitional transformation function to solve the unknown degradations without any iterative operations in inference. Specifically, the end-to-end TLSR network consists of a degree of transitionality (DoT) estimation network, a homogeneous feature extraction network, and a transitional learning module. Quantitative and qualitative evaluations on blind SR tasks demonstrate that the proposed TLSR achieves superior performances and costs fewer complexities against the state-of-the-art blind SR methods. The code is available at github.com/YuanfeiHuang/TLSR.

Citations (4)

Summary

We haven't generated a summary for this paper yet.