Papers
Topics
Authors
Recent
2000 character limit reached

Reinforcement Learning Random Access for Delay-Constrained Heterogeneous Wireless Networks: A Two-User Case

Published 27 Mar 2021 in cs.NI | (2103.14917v3)

Abstract: In this paper, we investigate the random access problem for a delay-constrained heterogeneous wireless network. As a first attempt to study this new problem, we consider a network with two users who deliver delay-constrained traffic to an access point (AP) via a common unreliable collision wireless channel. We assume that one user (called user 1) adopts ALOHA and we optimize the random access scheme of the other user (called user 2). The most intriguing part of this problem is that user 2 does not know the information of user 1 but needs to maximize the system timely throughput. Such a paradigm of collaboratively sharing spectrum is envisioned by DARPA to better dynamically match the supply and demand in the future [1], [2]. We first propose a Markov Decision Process (MDP) formulation to derive a modelbased upper bound, which can quantify the performance gap of any designed schemes. We then utilize reinforcement learning (RL) to design an R-learning-based [3]-[5] random access scheme, called TSRA. We finally carry out extensive simulations to show that TSRA achieves close-to-upper-bound performance and better performance than the existing baseline DLMA [6], which is our counterpart scheme for delay-unconstrained heterogeneous wireless network. All source code is publicly available in https://github.com/DanzhouWu/TSRA.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.