Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Training a Task-Specific Image Reconstruction Loss (2103.14616v2)

Published 26 Mar 2021 in eess.IV and cs.CV

Abstract: The choice of a loss function is an important factor when training neural networks for image restoration problems, such as single image super resolution. The loss function should encourage natural and perceptually pleasing results. A popular choice for a loss is a pre-trained network, such as VGG, which is used as a feature extractor for computing the difference between restored and reference images. However, such an approach has multiple drawbacks: it is computationally expensive, requires regularization and hyper-parameter tuning, and involves a large network trained on an unrelated task. Furthermore, it has been observed that there is no single loss function that works best across all applications and across different datasets. In this work, we instead propose to train a set of loss functions that are application specific in nature. Our loss function comprises a series of discriminators that are trained to detect and penalize the presence of application-specific artifacts. We show that a single natural image and corresponding distortions are sufficient to train our feature extractor that outperforms state-of-the-art loss functions in applications like single image super resolution, denoising, and JPEG artifact removal. Finally, we conclude that an effective loss function does not have to be a good predictor of perceived image quality, but instead needs to be specialized in identifying the distortions for a given restoration method.

Citations (21)

Summary

We haven't generated a summary for this paper yet.